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Abstract—As the demand for high bandwidth on the Internet 
increases, it is required to build next generation routers with the 
capability of forwarding multiple millions of packets per second. 
Reducing the required memory size of the forwarding table is a 
possible solution since small forward table can be integrated into 
the application specific integrated circuit (ASIC). In this paper a 
hash technique is developed to make the IP forwarding table as 
small as possible. The experiments show that the required 
memory size of the proposed scheme is smaller than other 
existing schemes for a large routing table.  
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I. INTRODUCTION

The exponential traffic rate due to the advent of 
World Wide Web (WWW) demands for high bandwidth 
on the Internet.  Backbone routers with gigabit links, 
such as OC-192, 10 Gigabits and OC-768, 40 Gigabits, 
are not uncommon. Among all the tasks performed by 
the routers, the packet forwarding is the most critical one 
that must be able to keep up with the link speed and 
router bandwidth. These backbone routers have to 
forward millions of packets per second at each port.  

The classless IP subnet scheme called Classless Inter-
Domain Routing (CIDR) evolves from the scarcity of 
IPv4 addresses. With CIDR, the routing entry (or called 
prefix) in a routing table could have arbitrary length 
ranging from 1 to 32 bits, instead of 8, 16, 24 bits in 
Classful Address scheme. Therefore, the IP lookup 
problem becomes a longest prefix matching problem, 
also called Best Matching Prefix (BMP) problem 
because of there may be more than one prefix that 
matches the target IP address. Figure 1 shows the 
distribution of prefix lengths for a typical large routing 
table available on the Internet [12]. This routing table 
will be used in the performance experiments in this 
paper.

The routing table in a router that is used to lookup an 
IP address stores an array of entries, each consisting of a 
network address that is the prefix of a group of IP 
addresses and the corresponding next port number to the 
network. When a router receives a packet, it must 
determine the next port number through which the 
packet must be forwarded.  

A large variety of routing lookup algorithms were 
classified and their worst-case complexities of lookup 
latency, update time, and storage usage are compared in 

[1]. Among them, a category of algorithms is based on a 
trie/tree structure. The binary trie is the basic data 
structure used in most of IP lookup algorithms. The 
binary trie is in fact a binary search tree using the bit 
value (0 or 1) to guide the search to the left or the right 
part of the tree. However, the binary tree structure must 
be implemented using linked list data structure. Each trie 
node has the left and right pointers pointing to its left 
and right sub-tree, respectively.  

Based upon this primitive trie structure, a set of 
prefix compression and transformation techniques are 
used to either make the whole data structure small 
enough to fit in a cache [9], or to transform the set of 
original prefixes to a different one in order to speed up 
the tree traversal procedure [4, 13]. In [7], the binary 
search on prefix lengths is proposed. The worst-case 
lookup complexity is the best among all the existing 
schemes, however, with the assumption that we can use 
perfect hash tables to lookup a possible prefix match on 
the set of prefixes in one step. The hardware based 
lookup algorithms using multi-bit trie proposed in [3, 11] 
is in fact a variation of the prefix transformation 
techniques. The extreme case is a 32-bit extended trie 
that trades a memory consumption of 32 GBytes and 
inefficient prefix updates for only one memory lookup 
latency. We can classify the 32-bit extended trie as a 
perfect hashing approach which is obviously not 
minimal.  

In [9], a small forwarding table (SFT) is proposed for 
IP lookups. The SFT scheme is based on a run length 
encoding technique to encode an array of disjoint 
prefixes. The array of disjoint prefixes is constructed by 
converting the binary trie to a complete binary tree. The 
detailed data structure can be illustrated in Figure 2, 

Figure 1: Distribution of prefix lengths for oix routing table.
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where a 6-bit sub-trie is shown. The level-1 pointer sub-
array corresponds to the fifteen 1’s (denoted as heads) in 
the bitmap shown in the figure. Out of these 15 heads, 
13 heads record the prefixes of length less than or equal 
to 16 and two heads (the fourth and fifth) indicate there 
exist sub-tries underneath them. The index Nt of the 
level-1 pointer sub-array for this 6-bit sub-trie is stored 
in the t t h  position of the base index array. The pointer 
sub-array starting at N t  contains 15 pointers 
corresponding to this 6-bit sub-trie. The code word array 
(I) which is the run-length encoding of the bitmap 
illustrates how the maptable is built. Four parts of 16 
numbers in the code word array (I) shown in a smaller 
font indicate the relative positions of the corresponding 
heads in the pointer sub-array of this 6-level sub-trie. 
Since the possible combinations of 16-number lists is 
limited to 678 and the patterns of the 16-number lists 
repeat, all the 16-number lists are sorted and stored in 
the maptable, a two-dimensional array. Thus the code 
word array (I) is rewritten to be (II). Although the 
memory usage is reduced because of maptable, one more 
memory access to the maptable is also incurred.  

Based the data structure shown in Figure 2, the 
lookup operations work as follows. Firstly, IP[31..22] is 
used to index the base index array and N t  is obtained. 
N t  is the starting index of level-1 pointer sub-array for 
the current 6-bit trie. Next, IP[31..20] is used to index 
the code word array (II) to get a pair of numbers which 
may be 0/r0, 3/r1, 10/r2, or 11/r3 in this example. For 
example, if IP[21..20] = 01 then the code word with 3/r1 
will be used. The index r1 is for maptable. Thus, through 
r1, we get a 16-number list of 0012333344445566 each 
of which is referenced by IP[19..16]. In summary, if 
IP[21..16] is 010011, the index of level-1 pointer array 
will be N t  + 3 + 2. The element of the level-1 pointer 
array at index N t  + 3 + 2 will be referenced to see if a 
match is found. 

Notice that only the first 16 levels of the complete 
binary trie are examined. We need the structure for the 
next 16 levels. The structure of the next 16 levels is 

similar, but a little modification is made with the 
memory reduction in mind, where sparse, dense, and 
very dense subtrie of 8 levels are distinguished.  

In [3], another run-length encoding scheme is 
proposed. To reduce the number of memory accesses, a 
straightforward 16-bit segmentation table is utilized to 
cover the first 16 levels of the trie. The next 16 levels of 
the trie are constructed by a compressed next hop array 
and a compressed bit map. The advantage of the 
proposed scheme is the maximum number of memory 
accesses that is 3. However, the memory usage is still 
high for a large routing table. 

In this paper, we shall propose a new method that 
employs a novel hashing technique to avoid wasting the 
unused space in the multi-bit trie. For 4-bit sub-tries, a 
near-minimal hash function can be constructed. The 4-
bit hashing tables are used as the building blocks to build 
the whole routing table recursively. We will show that 
the size of the proposed routing table is the smallest 
among all the existing schemes. 

The rest of the paper is as follows. Section 2 first 
shows a simple mechanism to reduce the memory usage 
of the binary trie. Then the basic idea of the hash 
function is illustrated. Based on the hash function, a 8-8-
8-8 hierarchical routing table is proposed. Performance 
comparisons using real routing tables are presented in 
Section 3. Finally, a concluding remark is given in the 
last section. 

II. PROPOSED DATA STRUCTURE

The binary trie is the simplest data structure for the 
IP lookup problem. The primary disadvantage is its 
worst case search time for an IP lookup which is 32 and 
128 memory references for IPv4 and IPv6, respectively. 
As indicated in [14], the more controlled expanded 
levels are used, the less memory is required for the 
routing table. Therefore, we conjecture that the binary 
trie can be optimized in term of memory storage. By 
carefully inspecting how the node space in the binary 
trie is utilized, it is easy to know that the reason for high 
memory usage in binary trie is the space for the pointers. 
In short, the space overhead for storing left and right 
pointers is large.

A naïve node implementation in the binary trie is to 
use memory addresses as pointers. In a 32-bit address 

IP[19..16]

1000 0000 1010 1000

0 3 10

Nt
t0 210-1 

0 0000 1111 2222 2222 3 0012 3333 4444 5566 10 0000 0000 0000 0000 11 0000 0000 1122 3333

0  r0  3 r1 10 r2 11 r3 

0000 0000 0000 0000

0000 0000 1122 3333

0000 1111 2222 2222

0012 3333 4444 5566

bitmap

Level-1 pointer sub-array 

Base index array

Code word sub-array (I) 

Code word sub-array (II) 

Maptable 

sub-tree t = IP[31..22] 

IP[31..22] 

IP[31..20]

Figure 2: Data structure for SFT forwarding table.
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GNode{
Base ptr: index of blocks (20 bits); 
Left, Right: index of LNodes (k+1)*2 bits; 
N: number of LNodes (k+1 bits); 
M: number of GNodes (k bits); 
P: port number (8 bits);  

}

LNode{
Left, Right: index of LNodes or GNodes (k+1 bits each);
flagL, flagR: for indicating if Left and Right point to a 

Gnode or a LNode (one bit each); 
P: port number (8 bits);  

}

Figure 3: Data structure for global and local nodes in 
the binary trie. 
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space, these pointers in the trie node are of 32 bits. 
Therefore, a trie node needs eight bytes for left and right 
pointers plus one byte for next port number, a total of 9 
bytes. As in LC trie, using local indices of a large pre-
allocated node array may reduce the pointer size. 

Consider an example routing table of more than 
100K entries we use in this paper, there are around 370K 
trie nodes if these routing entries are organized in a 
binary trie. Therefore, if all the trie nodes are organized 
in an array, we can use the node indices of the array as 
pointers. In other words, the trie nodes are physically 
stored in a sequential array but are logically structured in 
the binary trie. Assuming there are no more than one 
million trie nodes, 20 bits are sufficient for a pointer in 
the trie node. Thus, 40 bits are required for two pointers 
plus 8 bits for the next port number. A total of 6 bytes is 
required for a trie node. By a simple calculation for a 
binary trie of 370K nodes, the total memory requirement 
is around 2.2 Mbytes.  

k

# of 
global 
nodes 

# of local 
nodes 

# of 
nonprefix 

node 

Memory 
usage 

(Kbyes) 
1 347771 0 0 1,244 
2 104502 243269 132742 963 
3 64270 283501 172974 945 
4 37975 309796 199269 951 
5 36642 311129 200602 1,002 
6 19738 328033 217506 1,029 
7 41243 306528 196001 1,204 
8 7758 340013 229486 1,153 
Original binary trie with 20-bit pointers 2,038 

Table 1: Memory usage for growing subtrie of k levels. 

We can see that there are still two 20-bit pointers 
needed in a node that are in fact the global pointers. The 
node size can be reduced by using only one global 
pointer. If both left and right children exist, we restrict 
them to locate next to each other in the sequential array. 
Thus additional two bits are used to indicate whether left 
and right children exist. The node size is thus reduced 
from 48 bits to 30 bits. Notice that the number of trie 
nodes remains the same. Thus, for the binary trie of 
370K trie nodes, the total memory requirement is now 
1.4 Mbytes. Notice that the LC trie [6] has used this idea. 
We do not compare the proposed scheme with LC trie 
until Section 3. 

We generalize the above idea as follows. The nodes 
in a subtree of k levels are grouped into a block such that 
accessing any node in the block is based on the local 
index of the node inside the block. Figure 3 shows the 
generic data structure for global and local nodes (GNode 
and LNode). The global node and local node take 31+4k 
bits and 12+2k bits, respectively. The number N is of 
size one bit more than M because every node in the 
block can be local node and only the nodes in the bottom 
of k levels can be global node. The number of local 
nodes increases when k increases. What is the good 
choice for k in order to have minimum memory 
requirement for building the binary trie? It depends on 
how the binary trie is structured. The following table 

shows the memory requirements with different k using a 
large oix table [12]. We can see that the best value for k 
is 3. In fact, k = 2 or 4 are also very good. The table also 
shows the number of internal nodes that are not prefixes, 
called non-prefix nodes. These non-prefix nodes are the 
main cause for high memory usage. In next section, we 
will introduce a hashing technique that tries to remove 
these non-prefix nodes to save space. Although multibit 
techniques also remove the non-prefix nodes, they are in 
fact a special case of our hashing technique. The main 
drawback of the multibit techniques is that there are a lot 
of used memory slots in the multibit array. 

Hash function. Assume that there is a set of m keys, 
S = {k0, …, km-1}; each key is an n-bit integer. We like to 
find a mapping called the perfect hash function such that 
each key is mapped into a unique number in range 0 to 
H_Size 1. If m = H_Size, this perfect hash function is 
minimal. Finding a perfect hash function is easy if we 
can support a memory array of size 2n elements. The 
hashed number of a key is equal to the value of the key. 
However, there will be 2n  m unused elements. When 
2n is much greater than m, it is a large waste of memory 
space. Finding a minimal perfect hash function is 
difficult. In this section, we will propose a mechanism 
that allows us to find a near-minimal perfect hash 
function. The form of the proposed hash function, H, for 
an n-bit number (bn-1…b0) is formulated as follows. 

The absolute value of x is denoted as |x|. V0 and V1

are two pre-computed arrays of size n in which either of 
the elements V0[i] or V1[i] is zero and the values of the 
non-zero elements are in the range of  MinSize to 

H(bn-1…b0) = 
i=0

i=n-1 

Vbi
[i] ,

(1)

(c) hash table 

V0: 0 0 0 0 
V1: 4 3 1 1 

4-bit address

(b) multibit trie 

(a) binary trie 

4-bit address 

0

4

Figure 4: Binary trie, multibit trie, and hash table.
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MinSize for MinSize = min(H_Size  1, 2n-1).Consider a 
list of eight 4-bit numbers, 0000, 0001, 0011, 0100, 0110, 
0111, 1011, and 1100. We can construct arrays V0 and 
V1 as V0 = [0,0,0,0] and V1 = [4,3,1,1]. Based on the 
above hash function, we have the following results: 
H(0000) = 0, H(0001) = 1, H(0010) = 2, H(0011) = 3, 
H(0100) = 4, H(1000) = 5, H(1001) = 6, H(1011) = 7. 
Compared to multibit trie, the hashing technique can be 
illustrated in Figure 4. The 4-bit trie from an original 
binary trie is shown in Figure 4(b). Eight slots in the 
multibit array are unused. The trie using hash table is 
shown in Figure 4(c). The index of the prefix array can 
be computed by using the pre-computed hash tables. The 
details of computing arrays V0 and V1 are given as 
follows.

Computing V0[n-1 … 0] and V1[n-1 … 0]: The 
construction algorithm for arrays V0 and V1 is based on a 
form of exhaustive search. Briefly, for each cell in arrays 
V0 and V1, a number in range  MinSize to MinSize is 
tried one at a time until the hash values of keys are 
unique. The construction algorithm involves three steps 
that are described as follows. 

Step 1: sort the keys based on the frequencies of the 
occurrences of 0 or 1 starting from dimension 0 to n  1. 
If the number of 1’s is the same as that of 0’s the order 
of the keys may keep unchanged. Now assume the keys 
are in the order of k0, …, km-1 after sorting. In the next 
two steps the keys are processed in this order. 

Step 2: compute the cells in arrays V0 and V1 that the 
current key controls. The key, bn-1…b0, has the control 
on Vbi[i] if Vbi[i] is not yet controlled by one of 
preceding keys for i = n-1 to 0. For example, assume the 
first two keys in a 4-bit address space are 0000 and 0011. 
The first key control V0[3], V0[2], V0[1], V0[0]. 
However, the second key only control V1[1], V1[0] 
because V0[3] and V0[2] are already controlled by the 
first key. 

Step 3: Use the following rules to assign a number in 
range MinSize to MinSize to each cell controlled by 
the current key. If the hash value, H(bn-1…b0), of the key 
is taken by preceding keys or larger than MinSize or 
smaller than MinSize, every cell must be re-assigned a 
new number. If no number can be found after exhausting 
all the possible numbers for the cells controlled by the 
key, we will backtrack to the previous key by re-
assigning it a new number and continues the same 
procedure.

Example: We use the keys in Figure 4 to demonstrate 
how the hash table is constructed. The numbers of 0’s 
are then same as that of 1’s at the bit positions of 0, 1, 
and 2. The order of the keys depends only on bit 3 and 
thus is in the order of 0000, 0001, 0011, 0100, 0110, 
0111, 1011, and 1100. The construction of the hash table 
starts with the key 0000 which controls V0[3], V0[2], 
V0[1], V0[0] and we have V0[3]=0, V0[2]=0, V0[1]=0, 
and V0[0]=0. Next we consider key 0001 which controls 
only V1[0]. To make current hash table minimal, V1[0] is 
set to 1. We have H(0000) = 0, H(0001) = 1. Now, the 
third key is 0011 that controls only V1[1] set to 1. 
Therefore, we have H(0011) = 2. By doing the same 
construction process, we have V1[2]=3 because of key 
0100 and H(0100)=3. It is lucky we have H(0110)=4 and 
H(0111)=5. Finally, we set V1[3]=4 and have H(1011)=6 
and H(1100)=7. 

Analysis of the hash table. Since building a hash 
table uses the exhaustive search, it is not feasible for a 
large n. In this paper, we select the hash table of size n = 
4 as the building block for creating a large routing table. 
We use the exhaustive search to check whether finding a 
minimal perfect hash function is possible for a set of N 
4-bit numbers, where N = 1 to 16. We find out that the 
minimal perfect hash function exists for all cases except 
some rare cases when N = 10 or 11. The perfect hash 
function with the minimal hash size increased by one 
exists for these rare cases when N = 10 or 11. Figure 5 
illustrates one of these rare cases whose minimal perfect 
hash functions do not exist. The perfect hash function of 
size 11 is shown for a list of 10 numbers. Value nine is 
the hashed value that is not used by any of these 10 
numbers.  

The 8-8-8-8 Routing table. The proposed data 
structure for the routing table will be based on the 4-bit 
hash tables as the building blocks. The data structure of 
the routing table is organized in a 4-level 8-8-8-8 
hierarchy shown in Figure 6. Many other IP structures 
use a 16-bit segmentation table as the front-end lookup 
array [8, 11, 15]. The advantage of the 16-bit front-end 
lookup array is that only one memory reference is 
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hash table

Level – 24
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Figure 6: Data structure for the proposed 8-8-8-8 table.
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needed to reach half of the depth compared to the binary 
trie. However, assuming each element takes 24 bits, the 
16-bit segmentation table needs 192 Kbytes. We can see 
that many elements in the table are unused or the 
pointers in the elements are unused. 

Therefore, instead of the 16-bit table, we use an 8-bit 
pointer table as the front-end lookup array to avoid 
wasting memory. The reason we do not use hashing for 
this front-end array is we trade a little more space for 
access latency. Since this front-end 8-bit table is the only 
first level table, the memory wasted for unused slots is 
small and thus acceptable. Each element of the 8-bit 
pointer table is a 20-bit pointer pointing to the hash table 
of the next level subtrie or the port number if only prefix 
of length 8 exists. The hash table of the next level subtrie 
uses a data structure called format H block consisting of 
hash tables of 4-bit addresses that recursively hashes up 
to 16 hash tables of 4-bit addresses. The first part of 
format H block consists of a 20-bit global pointer 
pointing to the level-16 pointer table, an 8-bit default 
port number, a 4-bit number (denoted as hash_cnt) to 
record the number of sub-hash tables and a 20-bit hash 
table. The 20-bit hash table records V0[3-0] and V1[3-0]. 
Since there are four non-zero numbers each of which 
needs 4 bits and one more bit to record either V0[i] or 
V1[i] is zero. The second part is an array of hash_cnt
sub-hash tables each of which consists of a 4-bit prefix 
string, an 8-bit local index, a 4-bit counter to record the 
number of keys in the corresponding sub-hash table, and 
a 20-bit sub-hash table. The data structure in level 24 is 
the same as that in level 16. The level-16 and level-24 
pointer tables consist of 4-bit prefix and 20-bit global 
pointer. We use a different data structure in level 32 
since not so many routing entries have their lengths 
longer than 24. The level 32 structure is just an array of 
256 port numbers.  

Building and updating the 8-8-8-8 routing table.
The proposed 8-8-8-8 routing table is similar to the 4-bit 
trie except the some internal nodes in each 4-bit trie are 
replaced by the recursive hash tables of 4-bit addresses. 
We propose to first build the 4-bit trie and then compute 
the corresponding hash tables and the associated pointer 
tables. When a prefix is deleted from or added in the 
routing table, the 4-bit trie is then updated and thus the 
corresponding part of the proposed 8-8-8-8 routing table 
can be changed accordingly. In order to avoid the worst-
case computation time for some combination of 4-bit 
numbers as shown in Table 3, we pre-compute all the 
64K (216) possible 4-bit hash tables which account for 
128K bytes since each 4-bit hash table needs 16 bits. 
Now computing a 4-bit hash table becomes one memory 
reference to the corresponding 16 bits in the array of 
64K entries. Thus, the updating process when deleting or 
inserting a prefix is as fast as the 4-bit tire with 
additional four pre-computed 4-bit hash tables needed to 
be modified, at most.  

IP lookup. The IP lookup process is also simple. The 
level-8 pointer table is first referenced using the most 
significant 8 bits of the IP address. Then the next 8 bits 

of the IP address and the level-16 hash tables are used to 
compute the index of level-16 pointer table. The same 
process is performed for level-24 hash table. After 
reaching the level-24 pointer array, the last 8 bits of the 
IP address is used to reference the bottom port table, if 
needed. Based on the distribution of prefix lengths, 
99.9% of the routing entries have the prefix length less 
than or equal to 24. Thus, the number of the memory 
references is from 1 to 8. The hash tables on level-16 are 
used to compute the index of level-16 pointer array for 
accessing the level-24 hashing tables if needed. The 
operations are similar for level-24 hash tables and 
pointer table. Notice that we have counted twice of the 
memory references in accessing the level-16 and level-
24 hash tables because accessing two hash tables of 4-bit 
addresses is needed.  

Optimization. The proposed data structure can be 
further optimized as follows. The level-8 pointer array 
can be combined with the first part of the level-16 hash 
table, the 20-bit pointer, the default port, the 4-bit sub-
hash table count, and the 16-bit hash table. Similarly, the 
level-16 pointer table can be combined with the first part 
of level-24 hash table. Additionally, the level-24 pointer 
table can be combined with level-32 port table. The 
wasted memory is small because only a few prefixes are 
of length longer than 24. With these optimizations, the 
total number of memory accesses becomes 1 to 5. 

Computing the hash tables of addresses more than 4 
bits is a very time-consuming process. Also, the 
existence of the minimal perfect hash can not be known 
in advance. We have tried to use the hash table of 8-bit 
addresses directly for level-16 and level-24 hash table. 
The advantage is as follows. The size of the hash table of 
8-bit addresses is 9 bytes (8 8 bits for V0 and V1, 8 bits 
for prefix count in the 8-bit trie). The memory reduction 
will be much larger when the number of prefixes in a 8-
bit trie is small. However, the obvious drawback is the 
time-consuming computation of the hash table.  

Lookup Scheme Memory (KB) # of memory 
accesses (Min/Max)

Original table 662.7 - 
LC Trie 1,036.1 1/5 

SFT 649.4 2/12 
FIPRT 2,686 1/3 

Proposed 8-8-8-8 533.5 1/8 
Proposed 8-8-8-8 

(optimized) 
572.8 1/5 

Table 2: Memory required to supporting 120,635 entries 
(oix routing table). 

Worst case 20 ms Build time for hash table of 
4-bit addresses Average case 358 us 

Worst case 1 us IP lookup time 
Average case 0.6 us 

Table 3: times required for building the hash tables and the IP 
lookups. 

III. PERFORMANCE ANALYSIS

In this section, we will analyze the performance of 
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the proposed schemes. Then a routing table from 
University of Oregon Route Views Archive Project [12] 
is also included in our analysis. This routing table 
contains 120,635 entries. The length distribution of the 
routing table is illustrated in Figure 1. 

For the purpose of comparisons, three lookup data 
structures, the LC trie [6], the small forwarding table 
lookup scheme (SFT) proposed by W. Degermark, et al., 
[9] and a fast IP routing table lookup scheme (denoted as 
FIPRT) proposed by Huang, et al., [3] are also 
investigated.

The performance comparisons in terms of number of 
memory references and memory usage are shown in 
Table 2. The size of the memory required for the original 
routing table is computed based on the assumption of 
length format of the routing entry. In other words, each 
original routing entry records a 32-bit address, a 5-bit 
length, and an 8-bit port number. For the number of 
memory references in the FIPRT scheme is one to three, 
which is the best among the schemes. However, the 
memory needed for the whole routing table is 2.6Mbytes 
which is the largest in all the schemes. Although, in their 
original paper, the authors claimed that the routing table 
using their proposed data structure can fit into the 
SRAM, it is only for a small routing table (40,000 
entries). The size of the elements in the level-1 pointer 
array in SFT is assumed to be three bytes. The total 
number of bytes required for the routing table in the SFT 
scheme is 649.4Kbytes. The proposed routing table is 
the smallest one (533.5Kbytes) and can be put in SRAM 
of size 640Kbytes.  

We also conduct the experiments to measure the hash 
table build times and the lookup times for various IPs. 
Table 3 shows the measured times using Intel Pentium 
IV with 1.7G Hz clock rate and 768MB memory. We 
can see that the average lookup time is 0.6 micro-second 
that is fast. The main delay in lookup is because of the 
latency for the memory accesses and the slow hash 
function computing process. If we can fit the entire 
routing table into the fast cache memory, the IP lookup 
time can be further reduced.  

The hash tables of 8-bit addresses in level-16 and 
level-24 are computed, using the same large routing 
table as before. There are around 12,000 8-bit segments 
in this routing table. Sixty-one percent of these 8-bit 
segments have the minimal perfect hash tables. If we 
increase the hash table size by 10, all except 29 
segments have the perfect hash tables. For these 29 
segments, the only solution is to use the hash table of 
size 256.

IV. CONCLUSIONS

In this paper, we introduced a new hash table to 
compact the routing table. Hash tables of 4-bit addresses 
were used as the building blocks to construct the hash 
table of 8-bit addresses which in turn were used to build 

the 8-8-8-8 hierarchical routing table.  
We also conducted experiments to measure the size 

of required memory and showed that the proposed data 
structure of the routing table is the smallest, using a real 
routing table containing 120,635 routing entries.  
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