
A Small IP Forwarding Table Using Hashing
Yeim-Kuan Chang and Wen-Hsin Cheng

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan R.O.C.
ykchang@mail.ncku.edu.tw

Abstract—As the demand for high bandwidth on the Internet
increases, it is required to build next generation routers with the
capability of forwarding multiple millions of packets per second.
Reducing the required memory size of the forwarding table is a
possible solution since small forward table can be integrated into
the application specific integrated circuit (ASIC). In this paper a
hash technique is developed to make the IP forwarding table as
small as possible. The experiments show that the required
memory size of the proposed scheme is smaller than other
existing schemes for a large routing table.

Keywords—Hash table, IP lookup, and binary trie.

I. INTRODUCTION

The exponential traffic rate due to the advent of
World Wide Web (WWW) demands for high bandwidth
on the Internet. Backbone routers with gigabit links,
such as OC-192, 10 Gigabits and OC-768, 40 Gigabits,
are not uncommon. Among all the tasks performed by
the routers, the packet forwarding is the most critical one
that must be able to keep up with the link speed and
router bandwidth. These backbone routers have to
forward millions of packets per second at each port.

The classless IP subnet scheme called Classless Inter-
Domain Routing (CIDR) evolves from the scarcity of
IPv4 addresses. With CIDR, the routing entry (or called
prefix) in a routing table could have arbitrary length
ranging from 1 to 32 bits, instead of 8, 16, 24 bits in
Classful Address scheme. Therefore, the IP lookup
problem becomes a longest prefix matching problem,
also called Best Matching Prefix (BMP) problem
because of there may be more than one prefix that
matches the target IP address. Figure 1 shows the
distribution of prefix lengths for a typical large routing
table available on the Internet [12]. This routing table
will be used in the performance experiments in this
paper.

The routing table in a router that is used to lookup an
IP address stores an array of entries, each consisting of a
network address that is the prefix of a group of IP
addresses and the corresponding next port number to the
network. When a router receives a packet, it must
determine the next port number through which the
packet must be forwarded.

A large variety of routing lookup algorithms were
classified and their worst-case complexities of lookup
latency, update time, and storage usage are compared in

[1]. Among them, a category of algorithms is based on a
trie/tree structure. The binary trie is the basic data
structure used in most of IP lookup algorithms. The
binary trie is in fact a binary search tree using the bit
value (0 or 1) to guide the search to the left or the right
part of the tree. However, the binary tree structure must
be implemented using linked list data structure. Each trie
node has the left and right pointers pointing to its left
and right sub-tree, respectively.

Based upon this primitive trie structure, a set of
prefix compression and transformation techniques are
used to either make the whole data structure small
enough to fit in a cache [9], or to transform the set of
original prefixes to a different one in order to speed up
the tree traversal procedure [4, 13]. In [7], the binary
search on prefix lengths is proposed. The worst-case
lookup complexity is the best among all the existing
schemes, however, with the assumption that we can use
perfect hash tables to lookup a possible prefix match on
the set of prefixes in one step. The hardware based
lookup algorithms using multi-bit trie proposed in [3, 11]
is in fact a variation of the prefix transformation
techniques. The extreme case is a 32-bit extended trie
that trades a memory consumption of 32 GBytes and
inefficient prefix updates for only one memory lookup
latency. We can classify the 32-bit extended trie as a
perfect hashing approach which is obviously not
minimal.

In [9], a small forwarding table (SFT) is proposed for
IP lookups. The SFT scheme is based on a run length
encoding technique to encode an array of disjoint
prefixes. The array of disjoint prefixes is constructed by
converting the binary trie to a complete binary tree. The
detailed data structure can be illustrated in Figure 2,

Figure 1: Distribution of prefix lengths for oix routing table.

prefix length distribution (oix routing table 2002/12/01 [12])

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

prefix length

N
um

be
r

of
 e

nt
ri

es
 (

lo
g

sc
al

e)

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

where a 6-bit sub-trie is shown. The level-1 pointer sub-
array corresponds to the fifteen 1’s (denoted as heads) in
the bitmap shown in the figure. Out of these 15 heads,
13 heads record the prefixes of length less than or equal
to 16 and two heads (the fourth and fifth) indicate there
exist sub-tries underneath them. The index Nt of the
level-1 pointer sub-array for this 6-bit sub-trie is stored
in the t t h position of the base index array. The pointer
sub-array starting at N t contains 15 pointers
corresponding to this 6-bit sub-trie. The code word array
(I) which is the run-length encoding of the bitmap
illustrates how the maptable is built. Four parts of 16
numbers in the code word array (I) shown in a smaller
font indicate the relative positions of the corresponding
heads in the pointer sub-array of this 6-level sub-trie.
Since the possible combinations of 16-number lists is
limited to 678 and the patterns of the 16-number lists
repeat, all the 16-number lists are sorted and stored in
the maptable, a two-dimensional array. Thus the code
word array (I) is rewritten to be (II). Although the
memory usage is reduced because of maptable, one more
memory access to the maptable is also incurred.

Based the data structure shown in Figure 2, the
lookup operations work as follows. Firstly, IP[31..22] is
used to index the base index array and N t is obtained.
N t is the starting index of level-1 pointer sub-array for
the current 6-bit trie. Next, IP[31..20] is used to index
the code word array (II) to get a pair of numbers which
may be 0/r0, 3/r1, 10/r2, or 11/r3 in this example. For
example, if IP[21..20] = 01 then the code word with 3/r1
will be used. The index r1 is for maptable. Thus, through
r1, we get a 16-number list of 0012333344445566 each
of which is referenced by IP[19..16]. In summary, if
IP[21..16] is 010011, the index of level-1 pointer array
will be N t + 3 + 2. The element of the level-1 pointer
array at index N t + 3 + 2 will be referenced to see if a
match is found.

Notice that only the first 16 levels of the complete
binary trie are examined. We need the structure for the
next 16 levels. The structure of the next 16 levels is

similar, but a little modification is made with the
memory reduction in mind, where sparse, dense, and
very dense subtrie of 8 levels are distinguished.

In [3], another run-length encoding scheme is
proposed. To reduce the number of memory accesses, a
straightforward 16-bit segmentation table is utilized to
cover the first 16 levels of the trie. The next 16 levels of
the trie are constructed by a compressed next hop array
and a compressed bit map. The advantage of the
proposed scheme is the maximum number of memory
accesses that is 3. However, the memory usage is still
high for a large routing table.

In this paper, we shall propose a new method that
employs a novel hashing technique to avoid wasting the
unused space in the multi-bit trie. For 4-bit sub-tries, a
near-minimal hash function can be constructed. The 4-
bit hashing tables are used as the building blocks to build
the whole routing table recursively. We will show that
the size of the proposed routing table is the smallest
among all the existing schemes.

The rest of the paper is as follows. Section 2 first
shows a simple mechanism to reduce the memory usage
of the binary trie. Then the basic idea of the hash
function is illustrated. Based on the hash function, a 8-8-
8-8 hierarchical routing table is proposed. Performance
comparisons using real routing tables are presented in
Section 3. Finally, a concluding remark is given in the
last section.

II. PROPOSED DATA STRUCTURE

The binary trie is the simplest data structure for the
IP lookup problem. The primary disadvantage is its
worst case search time for an IP lookup which is 32 and
128 memory references for IPv4 and IPv6, respectively.
As indicated in [14], the more controlled expanded
levels are used, the less memory is required for the
routing table. Therefore, we conjecture that the binary
trie can be optimized in term of memory storage. By
carefully inspecting how the node space in the binary
trie is utilized, it is easy to know that the reason for high
memory usage in binary trie is the space for the pointers.
In short, the space overhead for storing left and right
pointers is large.

A naïve node implementation in the binary trie is to
use memory addresses as pointers. In a 32-bit address

IP[19..16]

1000 0000 1010 1000

0 3 10

Nt
t0 210-1

0 0000 1111 2222 2222 3 0012 3333 4444 5566 10 0000 0000 0000 0000 11 0000 0000 1122 3333

0 r0 3 r1 10 r2 11 r3

0000 0000 0000 0000

0000 0000 1122 3333

0000 1111 2222 2222

0012 3333 4444 5566

bitmap

Level-1 pointer sub-array

Base index array

Code word sub-array (I)

Code word sub-array (II)

Maptable

sub-tree t = IP[31..22]

IP[31..22]

IP[31..20]

Figure 2: Data structure for SFT forwarding table.

11

………..

………..

………..

1000 1000 1000 00001011 1000 1000 1010 1000 0000 0000 0000

GNode{
Base ptr: index of blocks (20 bits);
Left, Right: index of LNodes (k+1)*2 bits;
N: number of LNodes (k+1 bits);
M: number of GNodes (k bits);
P: port number (8 bits);

}

LNode{
Left, Right: index of LNodes or GNodes (k+1 bits each);
flagL, flagR: for indicating if Left and Right point to a

Gnode or a LNode (one bit each);
P: port number (8 bits);

}

Figure 3: Data structure for global and local nodes in
the binary trie.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

space, these pointers in the trie node are of 32 bits.
Therefore, a trie node needs eight bytes for left and right
pointers plus one byte for next port number, a total of 9
bytes. As in LC trie, using local indices of a large pre-
allocated node array may reduce the pointer size.

Consider an example routing table of more than
100K entries we use in this paper, there are around 370K
trie nodes if these routing entries are organized in a
binary trie. Therefore, if all the trie nodes are organized
in an array, we can use the node indices of the array as
pointers. In other words, the trie nodes are physically
stored in a sequential array but are logically structured in
the binary trie. Assuming there are no more than one
million trie nodes, 20 bits are sufficient for a pointer in
the trie node. Thus, 40 bits are required for two pointers
plus 8 bits for the next port number. A total of 6 bytes is
required for a trie node. By a simple calculation for a
binary trie of 370K nodes, the total memory requirement
is around 2.2 Mbytes.

k

of
global
nodes

of local
nodes

of
nonprefix

node

Memory
usage

(Kbyes)
1 347771 0 0 1,244
2 104502 243269 132742 963
3 64270 283501 172974 945
4 37975 309796 199269 951
5 36642 311129 200602 1,002
6 19738 328033 217506 1,029
7 41243 306528 196001 1,204
8 7758 340013 229486 1,153
Original binary trie with 20-bit pointers 2,038

Table 1: Memory usage for growing subtrie of k levels.

We can see that there are still two 20-bit pointers
needed in a node that are in fact the global pointers. The
node size can be reduced by using only one global
pointer. If both left and right children exist, we restrict
them to locate next to each other in the sequential array.
Thus additional two bits are used to indicate whether left
and right children exist. The node size is thus reduced
from 48 bits to 30 bits. Notice that the number of trie
nodes remains the same. Thus, for the binary trie of
370K trie nodes, the total memory requirement is now
1.4 Mbytes. Notice that the LC trie [6] has used this idea.
We do not compare the proposed scheme with LC trie
until Section 3.

We generalize the above idea as follows. The nodes
in a subtree of k levels are grouped into a block such that
accessing any node in the block is based on the local
index of the node inside the block. Figure 3 shows the
generic data structure for global and local nodes (GNode
and LNode). The global node and local node take 31+4k
bits and 12+2k bits, respectively. The number N is of
size one bit more than M because every node in the
block can be local node and only the nodes in the bottom
of k levels can be global node. The number of local
nodes increases when k increases. What is the good
choice for k in order to have minimum memory
requirement for building the binary trie? It depends on
how the binary trie is structured. The following table

shows the memory requirements with different k using a
large oix table [12]. We can see that the best value for k
is 3. In fact, k = 2 or 4 are also very good. The table also
shows the number of internal nodes that are not prefixes,
called non-prefix nodes. These non-prefix nodes are the
main cause for high memory usage. In next section, we
will introduce a hashing technique that tries to remove
these non-prefix nodes to save space. Although multibit
techniques also remove the non-prefix nodes, they are in
fact a special case of our hashing technique. The main
drawback of the multibit techniques is that there are a lot
of used memory slots in the multibit array.

Hash function. Assume that there is a set of m keys,
S = {k0, …, km-1}; each key is an n-bit integer. We like to
find a mapping called the perfect hash function such that
each key is mapped into a unique number in range 0 to
H_Size 1. If m = H_Size, this perfect hash function is
minimal. Finding a perfect hash function is easy if we
can support a memory array of size 2n elements. The
hashed number of a key is equal to the value of the key.
However, there will be 2n m unused elements. When
2n is much greater than m, it is a large waste of memory
space. Finding a minimal perfect hash function is
difficult. In this section, we will propose a mechanism
that allows us to find a near-minimal perfect hash
function. The form of the proposed hash function, H, for
an n-bit number (bn-1…b0) is formulated as follows.

The absolute value of x is denoted as |x|. V0 and V1

are two pre-computed arrays of size n in which either of
the elements V0[i] or V1[i] is zero and the values of the
non-zero elements are in the range of MinSize to

H(bn-1…b0) =
i=0

i=n-1

Vbi
[i] ,

(1)

(c) hash table

V0: 0 0 0 0
V1: 4 3 1 1

4-bit address

(b) multibit trie

(a) binary trie

4-bit address

0

4

Figure 4: Binary trie, multibit trie, and hash table.

1 2 3 4 5 6 7

0 1 3 64 7 11

0 1 3 6 7 11 12

12

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

MinSize for MinSize = min(H_Size 1, 2n-1).Consider a
list of eight 4-bit numbers, 0000, 0001, 0011, 0100, 0110,
0111, 1011, and 1100. We can construct arrays V0 and
V1 as V0 = [0,0,0,0] and V1 = [4,3,1,1]. Based on the
above hash function, we have the following results:
H(0000) = 0, H(0001) = 1, H(0010) = 2, H(0011) = 3,
H(0100) = 4, H(1000) = 5, H(1001) = 6, H(1011) = 7.
Compared to multibit trie, the hashing technique can be
illustrated in Figure 4. The 4-bit trie from an original
binary trie is shown in Figure 4(b). Eight slots in the
multibit array are unused. The trie using hash table is
shown in Figure 4(c). The index of the prefix array can
be computed by using the pre-computed hash tables. The
details of computing arrays V0 and V1 are given as
follows.

Computing V0[n-1 … 0] and V1[n-1 … 0]: The
construction algorithm for arrays V0 and V1 is based on a
form of exhaustive search. Briefly, for each cell in arrays
V0 and V1, a number in range MinSize to MinSize is
tried one at a time until the hash values of keys are
unique. The construction algorithm involves three steps
that are described as follows.

Step 1: sort the keys based on the frequencies of the
occurrences of 0 or 1 starting from dimension 0 to n 1.
If the number of 1’s is the same as that of 0’s the order
of the keys may keep unchanged. Now assume the keys
are in the order of k0, …, km-1 after sorting. In the next
two steps the keys are processed in this order.

Step 2: compute the cells in arrays V0 and V1 that the
current key controls. The key, bn-1…b0, has the control
on Vbi[i] if Vbi[i] is not yet controlled by one of
preceding keys for i = n-1 to 0. For example, assume the
first two keys in a 4-bit address space are 0000 and 0011.
The first key control V0[3], V0[2], V0[1], V0[0].
However, the second key only control V1[1], V1[0]
because V0[3] and V0[2] are already controlled by the
first key.

Step 3: Use the following rules to assign a number in
range MinSize to MinSize to each cell controlled by
the current key. If the hash value, H(bn-1…b0), of the key
is taken by preceding keys or larger than MinSize or
smaller than MinSize, every cell must be re-assigned a
new number. If no number can be found after exhausting
all the possible numbers for the cells controlled by the
key, we will backtrack to the previous key by re-
assigning it a new number and continues the same
procedure.

Example: We use the keys in Figure 4 to demonstrate
how the hash table is constructed. The numbers of 0’s
are then same as that of 1’s at the bit positions of 0, 1,
and 2. The order of the keys depends only on bit 3 and
thus is in the order of 0000, 0001, 0011, 0100, 0110,
0111, 1011, and 1100. The construction of the hash table
starts with the key 0000 which controls V0[3], V0[2],
V0[1], V0[0] and we have V0[3]=0, V0[2]=0, V0[1]=0,
and V0[0]=0. Next we consider key 0001 which controls
only V1[0]. To make current hash table minimal, V1[0] is
set to 1. We have H(0000) = 0, H(0001) = 1. Now, the
third key is 0011 that controls only V1[1] set to 1.
Therefore, we have H(0011) = 2. By doing the same
construction process, we have V1[2]=3 because of key
0100 and H(0100)=3. It is lucky we have H(0110)=4 and
H(0111)=5. Finally, we set V1[3]=4 and have H(1011)=6
and H(1100)=7.

Analysis of the hash table. Since building a hash
table uses the exhaustive search, it is not feasible for a
large n. In this paper, we select the hash table of size n =
4 as the building block for creating a large routing table.
We use the exhaustive search to check whether finding a
minimal perfect hash function is possible for a set of N
4-bit numbers, where N = 1 to 16. We find out that the
minimal perfect hash function exists for all cases except
some rare cases when N = 10 or 11. The perfect hash
function with the minimal hash size increased by one
exists for these rare cases when N = 10 or 11. Figure 5
illustrates one of these rare cases whose minimal perfect
hash functions do not exist. The perfect hash function of
size 11 is shown for a list of 10 numbers. Value nine is
the hashed value that is not used by any of these 10
numbers.

The 8-8-8-8 Routing table. The proposed data
structure for the routing table will be based on the 4-bit
hash tables as the building blocks. The data structure of
the routing table is organized in a 4-level 8-8-8-8
hierarchy shown in Figure 6. Many other IP structures
use a 16-bit segmentation table as the front-end lookup
array [8, 11, 15]. The advantage of the 16-bit front-end
lookup array is that only one memory reference is

8

8

8

8

IP

Level – 24
hash table

Level – 24
pointer table

Level – 16
pointer table

Level – 8
pointer table

Level – 32
port table

256

up to 16
Level – 16
hash table

Figure 6: Data structure for the proposed 8-8-8-8 table.

20

8 8 8

20

20 8 204 4 8 204 4 8 204

up to 16

20 8 204 4 8 204 4 8 204

20 4 20 4 20 4

20 4 20 4 20 4

0 (3)

10 (6)

4 (5)

V0: 0 0 2 1
V1: 5 2 0 0

12 (10)

9 (7) 8 (8)

5 (4)

2 (1)

7 (2)

3 (0)

Figure 5: Hash tables of 4-bit addresses.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

needed to reach half of the depth compared to the binary
trie. However, assuming each element takes 24 bits, the
16-bit segmentation table needs 192 Kbytes. We can see
that many elements in the table are unused or the
pointers in the elements are unused.

Therefore, instead of the 16-bit table, we use an 8-bit
pointer table as the front-end lookup array to avoid
wasting memory. The reason we do not use hashing for
this front-end array is we trade a little more space for
access latency. Since this front-end 8-bit table is the only
first level table, the memory wasted for unused slots is
small and thus acceptable. Each element of the 8-bit
pointer table is a 20-bit pointer pointing to the hash table
of the next level subtrie or the port number if only prefix
of length 8 exists. The hash table of the next level subtrie
uses a data structure called format H block consisting of
hash tables of 4-bit addresses that recursively hashes up
to 16 hash tables of 4-bit addresses. The first part of
format H block consists of a 20-bit global pointer
pointing to the level-16 pointer table, an 8-bit default
port number, a 4-bit number (denoted as hash_cnt) to
record the number of sub-hash tables and a 20-bit hash
table. The 20-bit hash table records V0[3-0] and V1[3-0].
Since there are four non-zero numbers each of which
needs 4 bits and one more bit to record either V0[i] or
V1[i] is zero. The second part is an array of hash_cnt
sub-hash tables each of which consists of a 4-bit prefix
string, an 8-bit local index, a 4-bit counter to record the
number of keys in the corresponding sub-hash table, and
a 20-bit sub-hash table. The data structure in level 24 is
the same as that in level 16. The level-16 and level-24
pointer tables consist of 4-bit prefix and 20-bit global
pointer. We use a different data structure in level 32
since not so many routing entries have their lengths
longer than 24. The level 32 structure is just an array of
256 port numbers.

Building and updating the 8-8-8-8 routing table.
The proposed 8-8-8-8 routing table is similar to the 4-bit
trie except the some internal nodes in each 4-bit trie are
replaced by the recursive hash tables of 4-bit addresses.
We propose to first build the 4-bit trie and then compute
the corresponding hash tables and the associated pointer
tables. When a prefix is deleted from or added in the
routing table, the 4-bit trie is then updated and thus the
corresponding part of the proposed 8-8-8-8 routing table
can be changed accordingly. In order to avoid the worst-
case computation time for some combination of 4-bit
numbers as shown in Table 3, we pre-compute all the
64K (216) possible 4-bit hash tables which account for
128K bytes since each 4-bit hash table needs 16 bits.
Now computing a 4-bit hash table becomes one memory
reference to the corresponding 16 bits in the array of
64K entries. Thus, the updating process when deleting or
inserting a prefix is as fast as the 4-bit tire with
additional four pre-computed 4-bit hash tables needed to
be modified, at most.

IP lookup. The IP lookup process is also simple. The
level-8 pointer table is first referenced using the most
significant 8 bits of the IP address. Then the next 8 bits

of the IP address and the level-16 hash tables are used to
compute the index of level-16 pointer table. The same
process is performed for level-24 hash table. After
reaching the level-24 pointer array, the last 8 bits of the
IP address is used to reference the bottom port table, if
needed. Based on the distribution of prefix lengths,
99.9% of the routing entries have the prefix length less
than or equal to 24. Thus, the number of the memory
references is from 1 to 8. The hash tables on level-16 are
used to compute the index of level-16 pointer array for
accessing the level-24 hashing tables if needed. The
operations are similar for level-24 hash tables and
pointer table. Notice that we have counted twice of the
memory references in accessing the level-16 and level-
24 hash tables because accessing two hash tables of 4-bit
addresses is needed.

Optimization. The proposed data structure can be
further optimized as follows. The level-8 pointer array
can be combined with the first part of the level-16 hash
table, the 20-bit pointer, the default port, the 4-bit sub-
hash table count, and the 16-bit hash table. Similarly, the
level-16 pointer table can be combined with the first part
of level-24 hash table. Additionally, the level-24 pointer
table can be combined with level-32 port table. The
wasted memory is small because only a few prefixes are
of length longer than 24. With these optimizations, the
total number of memory accesses becomes 1 to 5.

Computing the hash tables of addresses more than 4
bits is a very time-consuming process. Also, the
existence of the minimal perfect hash can not be known
in advance. We have tried to use the hash table of 8-bit
addresses directly for level-16 and level-24 hash table.
The advantage is as follows. The size of the hash table of
8-bit addresses is 9 bytes (8 8 bits for V0 and V1, 8 bits
for prefix count in the 8-bit trie). The memory reduction
will be much larger when the number of prefixes in a 8-
bit trie is small. However, the obvious drawback is the
time-consuming computation of the hash table.

Lookup Scheme Memory (KB) # of memory
accesses (Min/Max)

Original table 662.7 -
LC Trie 1,036.1 1/5

SFT 649.4 2/12
FIPRT 2,686 1/3

Proposed 8-8-8-8 533.5 1/8
Proposed 8-8-8-8

(optimized)
572.8 1/5

Table 2: Memory required to supporting 120,635 entries
(oix routing table).

Worst case 20 ms Build time for hash table of
4-bit addresses Average case 358 us

Worst case 1 us IP lookup time
Average case 0.6 us

Table 3: times required for building the hash tables and the IP
lookups.

III. PERFORMANCE ANALYSIS

In this section, we will analyze the performance of

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

the proposed schemes. Then a routing table from
University of Oregon Route Views Archive Project [12]
is also included in our analysis. This routing table
contains 120,635 entries. The length distribution of the
routing table is illustrated in Figure 1.

For the purpose of comparisons, three lookup data
structures, the LC trie [6], the small forwarding table
lookup scheme (SFT) proposed by W. Degermark, et al.,
[9] and a fast IP routing table lookup scheme (denoted as
FIPRT) proposed by Huang, et al., [3] are also
investigated.

The performance comparisons in terms of number of
memory references and memory usage are shown in
Table 2. The size of the memory required for the original
routing table is computed based on the assumption of
length format of the routing entry. In other words, each
original routing entry records a 32-bit address, a 5-bit
length, and an 8-bit port number. For the number of
memory references in the FIPRT scheme is one to three,
which is the best among the schemes. However, the
memory needed for the whole routing table is 2.6Mbytes
which is the largest in all the schemes. Although, in their
original paper, the authors claimed that the routing table
using their proposed data structure can fit into the
SRAM, it is only for a small routing table (40,000
entries). The size of the elements in the level-1 pointer
array in SFT is assumed to be three bytes. The total
number of bytes required for the routing table in the SFT
scheme is 649.4Kbytes. The proposed routing table is
the smallest one (533.5Kbytes) and can be put in SRAM
of size 640Kbytes.

We also conduct the experiments to measure the hash
table build times and the lookup times for various IPs.
Table 3 shows the measured times using Intel Pentium
IV with 1.7G Hz clock rate and 768MB memory. We
can see that the average lookup time is 0.6 micro-second
that is fast. The main delay in lookup is because of the
latency for the memory accesses and the slow hash
function computing process. If we can fit the entire
routing table into the fast cache memory, the IP lookup
time can be further reduced.

The hash tables of 8-bit addresses in level-16 and
level-24 are computed, using the same large routing
table as before. There are around 12,000 8-bit segments
in this routing table. Sixty-one percent of these 8-bit
segments have the minimal perfect hash tables. If we
increase the hash table size by 10, all except 29
segments have the perfect hash tables. For these 29
segments, the only solution is to use the hash table of
size 256.

IV. CONCLUSIONS

In this paper, we introduced a new hash table to
compact the routing table. Hash tables of 4-bit addresses
were used as the building blocks to construct the hash
table of 8-bit addresses which in turn were used to build

the 8-8-8-8 hierarchical routing table.
We also conducted experiments to measure the size

of required memory and showed that the proposed data
structure of the routing table is the smallest, using a real
routing table containing 120,635 routing entries.

REFERENCES

[1] M. A. Ruiz-Sanchez, Ernst W. Biersack, and Walid
Dabbous, “Survey and taxonomy of IP address
lookup algorithms”, IEEE Network Magazine,
15(2):8--23, March/April 2001.

[2] Yazdani, N. and Min, P.S. “Fast and scalable
schemes for the IP address lookup problem”,
Proceedings of IEEE High Performance Switching
and routing 2000.

[3] N. F. Huang, S. M. Zhao, J. Y. Pan, and C. A. Su,
"A fast IP routing lookup scheme for gigabit
switching routers," in Proc. INFOCOM 99, March
1999.

[4] Butler Lampson, Venkatachary Srinivasan and
George Varghese, “IP lookups using multiway and
multicolumn search", IEEE/ACM Transactions on
Networking, Volume 3, Number 3, Pages 324-334,
1999.

[5] Geoff Huston, “Analysis of the Internet's BGP
routing table”, Internet Protocol Journal, 4(1), March
2001.

[6] S. Nilsson and G. Karlsson, “Fast address lookup for
Internet routers”, Proc. IFIP 4th International
Conference on Broadband Communications (BC'98),
pp.11-22, 1998.

[7] M. Waldvogel, G. Varghese, J. Turner and B.
Plattner. “Scalable high-speed IP routing lookups,”
Proceedings of ACM Sigcomm, pp.25-36, October
1997.

[8] T. Chiueh et al, “High Performance IP Routing
Table Lookup Using CPU Caching”, in Proc.
INFOCOM 99, March 1999.

[9] M. Degermark, A. Brodnik, S. Carlsson, and S.
Pink. “Small Forwarding Tables for Fast Routing
Lookups.” ACM SIGCOMM, Palais des Festivals,
Cannes, France, pp. 3-14, 1997.

[10]K. Sklower, A Tree-based Packet Routing Table for
Berkeley Unix, Proc of 1991 Winter Usenix Conf,
1991, pp.93-99

[11]P. Gupta, S. Lin, N. McKeown, “Routing Lookups
in Hardware at Memory Access Speeds”, in Proc.
INFOCOM 99, March 1999.

[12]David Meyer, “University of Oregon Route Views
Archive Project: oix-damp-snapshot-2002-12-01-
0000.dat.gz “ at http://archive.routeviews.org/

[13]S. Suri, G. Varghese, and P.R. Warkhede,
“Multiway Range Trees: Scalable IP Lookup with
Fast Updates”, Global Com 2001.

[14]Srinivasan, V., and Varghese, G. “Fast address
lookups using controlled prefix expansion”, ACM
Trans. on Computer Systems 17, 1,1--40, Feb. 1999.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

